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The natural oscillations of a rectangular parallelepiped,which has all its di- 

mensions of similar magnitude, are examined. The numerical results for rec- 

tangular bars obtained as a particular case of a general solution show thateven 

the first approximation gives resuk which are in good agreement with experi- 
mental data. 

At present, the mathematical theory of elasticity has been used to study only 
the theory of oscillations of very thin bars and plates and natural osciUations 

of a sphere. Attempts to formulate a theory of natural oscillations for a right 

circular cyl&ider ( [I-43,et al.) turned out to be unsuccessful There is no in- 
formation in the literature OR the calculations of the natural oscillations of 
shapes other than cylinders or spheres with all the dimensions of the same order 

of magnitude, 

1. Tht reduction of ths squsttont of motion $4 H8ImhoZte equa- 
ti one, The equation of motion to be integrated has the form 

pAiu -+- po2u i_ fh Jr p) grad div u = 0 (1.1) 

where u is the displacement eigenvector, h, p are Lamk elastic constants, p is the 

density of the material, or is the natural frequency of oscillation. 
The boundary conditions corresponding to zero surface loads which act OR the solid 

have the form cr*n = 0 (I* 2) 

where o is the stress tensor, n is the normal vector drawn outward from the solid sur- 

face. 
Equation (1.1) is equivalent to three scalar equations which represent the projections 

onto the axes of a Cartesian system of coordinates syz. After differentia~n~ the first of 

these equations with respect to z, the second with respect to $, and the third with res- 
pect to 2; , and adding the resulting equations, we obtain au equation for the divergence 

of the displacement eigenvector 

A6 + kBS ;= 0, k= = pas/h-k 2~ (B=divu) (1.3) 

on finding the general solution of Eq. (1.3) and substituting it into Eq. (1, I), We obtain 

a system of nonhomogeneous equations. The general solution of this system can be Writ- 

ten in the form 
u=u’---&grad6 (1.4) 

where the first term is the solution of the homogeneous equation 

&f + kp2U’ z 0, fce2 = 5 (f-5) 

The second term, however, represents the particular integral of the nonh~mo~ene~~ 
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equation (1.1) which can be verified from the substitution. 
Let us introduce the auxiliary functions fr (i = 1, 2, 3) which like u’ satisfy the 

Helmholtz equation (1.5) and, are connected with the components of function U’ by the 

relations ui’ = aft I dXt. The functions fi determined in this way are connected by the 

following relation s ay. 

c 
L= 
ax i’ 

0 
(1.6) 

i=l 

Let the parallelepiped be bounded by the planes 5 = t_ x,,, y = =fI: y, and z = 
-t zO. In this case, the boundary conditions (1.2) reduce to vanishing of the correspond- 
ing components of the tensor o at the faces of the parallelepiped. 

Thus, the problem of natural oscillations in a parallelepiped is reduced to the solution 
of four Helmholtz equations with respect to three functions fi and a function 6 with 

boundary conditions (1. Z), where the components of the stress tensor must be expressed 
in terms of the functions fi and 6. 

2. Integration of Hstmholtz equation@. Let us integrate Eqs. (1.3) and 
(1.5) using the method of overdetermined series [S]. The main point of the method is 

that a fairly large class of solutions in the form of sums of series of complete systemsof 
eigenfunctions exist for the elliptic equation which can be solved by the method of se- 

paration of variables. The coefficients of these series are the coefficients of the expan- 
sion of the unknown solution on the corresponding surfaces. The solutions of ordinary dif- 
ferential equations into which the initial equation breaks down when it is solved by se- 
paration of variables are used as eigenfunctions. Thus, for a rectangular parallelepiped, 

the solution consists of three double series 

cos mn (Y + ~0) 

2Yo +ztcrnl cosxmzx +Dml sinx,ls)cos mn(Y+YO)X 
2Y* 

(2.2) 

1, m = 0, i, 2, . . , 

If we use an analogous representation for the functions fi with the conditions (1.6) 
and substituting them into (1.4), we obtain a solution of Eq. (1.1) for certain restrictions 
on the edges of the parallelepiped. These restrictions can be removed by adding the 
Helmholtz equation to the investigated solution: (1) the solution in the finite form which 
contains at least 8 arbitrary constants necessary to remove the restrictions at the verti- 
ces, and (2) the solution in the form of a set of 12 single series necessary to remove the 
restrictions at the internal points of the ribs of the parallelepiped. In this case, all the 
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natural oscillations of the free parallelepiped will be found. Otherwise, only a number 
of all the studied oscillations will be obtained. 

In this paper, the results obtained, assuming that 6 is represented by (2,1),&e described. 

In addition, the symmetry elements of the examined parallelepiped are made use of. The 
three symmetry planes t = 0, y = 0 and z = 0 are just such elements. Further 
we shall examine only the solutions symmetrical with respect to these planes. For this, 

let us assume that B,, = I),! = F,r = 0, n = 1, 3, 5, . . .; t, ;111 = 0, 2, 4. 
For the functions fi ) we use an expression which differs from (2.1) in that the expansion 

will have superscripts 1, 2, 3, and x,[, T,~, o,l will be dashed, 

3, Equrtionr for determfn~ng the ~oefficf6nt:‘ The solutions obtained 
of type (2.1) will have for 6 and fi 12 infinite sequences of unknown coefficients which 

should be determined from the boundary conditions (1.2) and the relation (1.6). It is ob- 
vious that condition (1.6) will be satisfied if the coefficients are connected by the rela- 

tiOtLS 

(3.1) 

The remai~ng nine relations are obtained from the boundary conditions in the follow- 

ing way. We write the expression for the component of the stress tensor in terms of the 
solutions constructed for I 6 and fi +urd represent each of these expressions by a unique 

Fourier series. Then, on satisfying the homogeneous boundary conditions, we equate the 

coefficients in the expansion of the Fourier series to zero. Thus, requiring that the com- 
ponents of the stress tensor rXy on the face LL = x0 be zero 

expanding the expression obtained into a Fourier series in terms of the functions 

c5s m(Y+Yo) c5s ln@+ 4 
2YO 2% 

and equating all expansion coefficients to zero, we obtain 

In the same way, by equating the remaining eight components of the stress tensor to 
zero, we obtain eight further relations between the unknown sequences of the coefficients. 
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It should be noted that from the 12 relations between the unknowns, eight are simple, 
i.e. of the type (3. l), and the remaining four - of the type (3.2). This makes it fairly 
easy to reduce the problem to two infinite systems with respect to two infinite sequen- 
ces of unknowns A,, and Enl 

a=i,2; i,‘n=1,3,5...; l,m=0,2,4 ,... 

E$;’ -’ A$’ = Jj’. II, A$’ = &’ = A. 21 

The meaning of the superscripts 1, m is such that when they are zero, the given coeffi- 
cients should be multiplied by l/s; Pkrn, Grnl and LEm are the matrix elements 

of the system which are simple but cumbersome expressions appearing as a result of the 

re-expansion of some trigonometric functions in terms of a certain class of eigenfunctions, 
which is chosen on each face of the parallelepiped. The elements T&n are somewhat 
more complex since the series which are the linear combinations of the matrix elements 

of the type mentioned above, have to be summed. Thus, the total number of unknowns 
which consists of 12 infinite sequences can be reduced to two infinite sequences for which 

the homogeneous system (3.3) was obtained. 

4. Simplification of the ryrtem obtained and numeric&l re#ultr. 
Even with modern computing techniques the solution of the system (3.3) presents consi- 
derable mathematical difficulties. This can be explained both by the complexity ofsum- 
ming of the series making up the matrix elements T,$,, and by the fact that the mat- 
rix of coefficients of the infinite system obtained has a three-dimensional structure. 

However, in a number of cases, it is possible to simplify the system. The detailed analysis 
of the matrix elements shows that for y, + 0 and z. -+ 0 the quantities Lz,and Kirnl 
remain finite, whereas Piitm and T& decrease as yes or zos. However, if 50 + 
00, then L&, and Kzml also remain finite, and P$,,, and Tzi,,, decrease as 1 / 20’ 
and as 1 I xo8 in the neighborhood of the points xi,’ x0 = pn, where p=o,j, 2, . . . . 

Thus, for y. / x0 < 1 and 20 / x0 < 1 the coefficients P&, and I’Ei, can be 
neglected compared with Li, and CL, and then the system (3.3) can be written in 
the following form: 

?* K:rnlEnl+ GmAnm = 0 
(4.1) 

a=l, 2; n = 1, 3, 5, . . . . . 1. m = 0, 2, 4, .: 

Letting x0 and z,, in (4.1) tend to zero, it can be seen that the system obtained is satis- 
fied identically since A,, = E,, = Ofor m#O.Form=Z=O,wehave 

& 4x0 + [(A + $ do) ctg GOZO + (4.2) 
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By equating the determinant of this system to zero, we obtain an equation for the fre- 
quencies, This equation was solved for ka and the frequency was found using the formula 

o=2ncF=vk v l--a 

(1 + 0‘) (1 - 24 (4.3) 

where (r is Poisson’s ratio and v is the velocity of propagation of the oscillations. 
The natural frequencies for parallelepipeds of various dimensions were calculated . 

The results were compared with existing experimental data [6& Table 1 shows experi- 
mental results for pe and those for F, obtained from the homogeneous system (4.2) and 

computed by formula (4.3),for 100 X 10 X 10 mm parallepiped (A) and 100 x 

4.8 x 3.8 mm parallelepiped (B). 

n I 1 
I 

3 

A Fe, kHz 24.77 73.82 
F,, kHz 24.76 73.86 

B F,, kHz 22.44 67.17 
F,, kHz 22.44 67.28 

Ft 

121.2 
121.4 

121.13 
112.0 

7 9 

164.9 
165.7 

156.2 
156.5 

- 

- 

I 

201.9 
203.3 
216.9 

200.1 
200.5 

Table 1 

Ii I 15 

230.6 266.1 
223.4 273.3 
231.9 411.2 

243.3 325.9 
244.1 327.9 

As can be seen from Table 1, the error in determining the frequencies varies from 
0.04% to 370 depending on the number of eigenvalues and on the dimensions of a paral- 
lelepiped. Apart from that, in the first case, beginning from n = 9, the calculations 

give two frequencies for each n , This can apparently be explained by the fact that for 
the given geometry, the high eigenvalues must be found by solving the system (3.3) and 

not from (4.2). 

The authors would like to thank A. G. Vlasov for his interest in the work. 
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